US009274921B2

a2z United States Patent (10) Patent No.: US 9,274,921 B2
Alcott et al. (45) Date of Patent: Mar. 1, 2016
(54) SYSTEM AND METHOD FOR MANAGING g’(s)gg’% ;g gl : ;gggg E/qutfm et él ~~~~~~~~~~~ o ;};; }%
s s artinez-Guerra et al. .
CODE DISPLACEMENT 6,601,233 B1* 7/2003 Underwood 717/102
6,735,769 B1* 5/2004 Brenner GOG6F 9/3836
(75) Inventors: Thomas J. Alcott, Huntington Beach, remner 711/133
CA (US); Kulvir Singh Bhogal, Forth 6,851,104 BL* 2/2005 Rodrigues da Silva 717/104
Worth, X (US), Jason Robert McGee, 7,203,944 B1* 4/2007 van Rietschote ... GO6F 9/45533
Apex, NC (US); Alexandre Polozoff, 7,475,396 B2* 1/2009 Kapoor 71;/157/51;
Bloomington, IL (US) 7702497 B2* 42010 Dombrowski etal. 703/22
2002/0104067 Al* 82002 Greenetal. ... 717/101
(73) Assignee: International Business Machines 2003/0055878 Al* 3/2003 Fletcher GO6F 9/465
Corporation, Armonk, NY (US) 709/203
2003/0149904 Al* 82003 Kim .c.cccooevvevveeiennennee 713/330
* e : : B B 2003/0172370 Al* 9/2003 Satuloori et al. . 717/120
(*) Notice: Subject. to any dlsclalmer,. the term of this 2004/0163014 AL* 82004 Corren .. 714/35
patent is extended or adjusted under 35 2004/0168153 Al* 82004 Marvin 717/120
U.S.C. 154(b) by 1456 days. 2005/0005261 Al* 1/2005 Severin 717/108
2005/0229174 Al* 10/2005 Westendorf et al. .. 717175
(21) Appl. No.: 11/616,400 2006/0123410 Al* 6/2006 Kapoor 717/174
2006/0129516 Al* 6/2006 Bradfordetal. 707/1
Tad. 2006/0161884 Al* 7/2006 Lubrechtetal. 717/104
(22) Filed: Dec. 27, 2006 2006/0277539 Al* 12/2006 Amarasinghe et al. 717/168
(65) Prior Publication Data (Continued)
US 2008/0163169 A1 IJul. 3, 2008 OTHER PUBLICATIONS
(51) Int.Cl Llosa, Joseph, et al., Reduced Code Size Modulo Scheduling in the
G0‘6F }1/34 (2006.01) Absence of Hardware Support, [EEE, 2002, pp. 99-110.
GOGF 9/50 (2006.01) (Continued)
(52) US.CL
CPC ... GOG6F 11/3433 (2013.01); GO6F 11/3466 Primary Examiner — Matthew Brophy
(2013.01); GO6F 9/5038 (2013.01); GO6F (74) Attorney, Agent, or Firm — Charles L. Moore; Moore &
11/3409 (2013.01); GO6F 2201/81 (2013.01); Van Allen PLLC
GOGF 2201/865 (2013.01)
(58) Field of Classification Search (57 ABSTRACT
CPC ... G06F 2009/4557 A System for managing Code displacement may include a
uspC o 717/ 120*1.21; 709/226 manager and an application operable on a server. The appli-
See application file for complete search history. cation may include a plurality of modules each module for
. performing a different operation. The system may also
(56) References Cited include priority information associated with each module to
U.S. PATENT DOCUMENTS permit the manager to deactivate selected ones of the modules
o based on the priority information to improve performance of
5717900 A 2/1998 Whittaker the application.
5,742,823 A * 4/1998 Edwardsetal. 718/102
6,055,363 A * 4/2000 Bealsetal.cccocc... 709/201 23 Claims, 6 Drawing Sheets

204

MONITOR
PERFORMANCE

/
PARAMETERS, TRAFFIC
LEVELS (TRAFFIC

MANAGER), LOAD, ETC.

206

210

—

IDENTIFY LESSER
PRIORITY MODULES FOR
TERMINATION OF
TRAFFIC IN RESPONSE TO
EXCESSIVE TRAFFIC, ETC.

208 l

TERMINATE TRAFFIC TO
IDENTIFIED LESSER
PRIORITY MODULES

AS NEEDED ON

PREDETERMINED BASIS,

PRIORITY,
UTILIZATION, ETC.

__________________ | S

}

IDENTIFY LESSER PRIORITY
OR SHUTDOWN MODULES
TO RESTORE TRAFFIC IN
RESPONSE TO
MANAGEABLE
TRAFFIC LEVELS, ETC.

212

RESTORE TRAFFIC
TO LESSER
PRIORITY OR SHUTDOWN
MODULES ON
PREDETERMINED BASIS

__________________ |

US 9,274,921 B2

Page 2
(56) References Cited 2011/0179252 Al* 7/2011 Master ... GO6F 9/505
712/30
U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS
2007/0061799 Al* 3/2007 Kimmerlycoeoon. 717/168

2007/0094396 Al* 4/2007 Takano ...

2007/0157185 Al* 7/2007 Semerdzhiev et al.
2007/0168961 Al* 7/2007 Ammerlaan et al.

2007/0233969 Al* 10/2007 Shukla ...

2007/0240126 Al* 10/2007
2007/0294668 Al* 12/2007 i C e

..... 717/148

..... 717/120
GO6F 9/4881 Zhang, Xiaolan, et al., System Support for Automatic Profiling and

HO4L 67/1008 Seshadri, Arvind, et al., Pioneer: Verifying Code Integrity and

709/226 Enforcing Untampered Code Execution on Legacy Systems, ACM,
2005, pp. 1-16.

711/150 Optimization, ACM, 1997, pp. 15-26.

... 717/130
..... 717/120 * cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 6 US 9,274,921 B2

FIG. 1

100
/102
APPLICATION SERVER, PROCESSOR, ETC.
118
CooE | «
INJECTION [« MANAGER
at 12" <
N\
APPLICATION
mopuLe -~ 110
[]
: 110
e
MODULE 116 1/14
PROPERTY FILE ¥
* WEB » |MODULE ID, TYPE, ETC.
. » | ¢ NUMERICAL SCALE
« REQUIRED, NOT <
REQUIRED, OPTIONAL,
) LC'-ASS' DESIRED, ETC.
CLASS- o NOP, CACHED-RETURN
LOADER VALUE, ETC.
/ A
124
OTHER FILE(S) CONTAINING
ALTERNATE SHUT OFF CODE, |,
ETC. (PolicyViewAltermate.class,
122 —T] ETC.)
A
MEDIUM |« 108 .
/ APPLICATION
126

US 9,274,921 B2

Sheet 2 of 6

Mar. 1, 2016

U.S. Patent

-.-.-.-_-.-.-.-.-.-.-.-.-.- o ’

¢ Old

gd¢ Old

V¢ 'Old

013 'NOLLVZITILN

sSIsvd AININNZLIaTNd ALIYONd
NO STINAON ‘s1sva AININYT13aTNd
NMOGQLNHS ¥O ALRIONd NO G3d3aN SV
w3ss31 0L STINAON ALROId
1441 THO1STY W=SST1 q3I4ILNIA]
OLOI3VRL IIVNINRIEL N
\ A -
oEm..u_M__w\m_,w._.qmw__m__ék '013 ‘Ol44vaL JAISSI0XT
OL ISNO|STY NI D144Vl
NI o_“m_ﬂmﬂw%wm_mm_ oL 40 NOLLYNIN3L -
STTNAON NMOQLNHS HO HOd ST INAON ALIHOIRd V¢ Ol
W3SST1 AJILNIQ
ALIMOIN ¥3SSTT A4ILNIAI
A A
0Lz \ / 90¢
013 ‘avo (H3OVNVIN
ol4dvdl) STIATT / sman
O144vHL ‘SHILINVHVA 4 S
FONVINHOS43d /
d YOLINOW AN
202 v0z

00¢

US 9,274,921 B2

Sheet 3 of 6

Mar. 1, 2016

U.S. Patent

3714 ALY3dO¥d
ang)¢ NO g3svd 300D
A3ININYILIAI™d LO3ACNI
92z A
zee 1
(‘013 (‘013 ‘3@0D ANTVA
‘INTVA NYNLTY NHNLINY IHOVD ‘IA0D JdON) Tid
IHOVD ‘'dON) 3a0D AL¥3dO¥d NO a3svd a3LoarN
a3Lo3arNI IAOWIH 39 01 3302 40 IdAL ININYILIA
\ \ A
vee ¢ 022
THVLISTY MO
1HvV1Say NMOQLNHS NMOALNHS
8le d¢ Old
XN LAVLSTY
ANV NMOALNHS| |« HITIOHULINOD
JT1NAOW ¥A0 Old4vdl
y Y / w1z
\
912

... |

U.S. Patent Mar. 1, 2016 Sheet 4 of 6 US 9,274,921 B2

304
GET INPUT ,
PARAMETERS
/ 308
GET RETURN
VALUE FOR |«
KEY = INPUT
312
RETURN
RETURN VALUE
314
y /
RUN
ORIGINAL
CODE
310
218 316
) / CACHE
GET MODULE
—» RETURN 'Y
VALUE

A 4

STORE IN CACHE
KEY = INPUT
VALUE = RETURN VALUE

2
320

US 9,274,921 B2

Sheet 5 of 6

Mar. 1, 2016

U.S. Patent

S3A

8¢y

L {44

gy ‘Old

Vv "Old

¥ Old

; /
Amvm._wn? cly

a31vAalLOva

12

%A>"111LN
NdO

3009 FLYNYILTVY
HLIM J1VAILOVIA
OLSTINAON <
e ETE [JA

» (N3
ON VJV

¢ 30d0°0
"1V A8 NOLLVAILLOV3A
JO4 F1aVIIVAVY
S371NAON

1154

¢

%X<TLN
NdO

ON
807

ON

A%

avo1 ¥OLINOW (D13
“YIOVYNVYIN NOISIDAA
ax IYIHJSTIM

ONILSIX) ¥IOVNVW | [
A

D4

NOLLVZIIILN
AHOWIN

AV
NOILVZIILN
Nndd

90y

yov

US 9,274,921 B2

Sheet 6 of 6

Mar. 1, 2016

U.S. Patent

M S3aATNAOCW

A% 4

AN

013 ‘LS
WOY4d S3TNAON
a3a1vALLOvVad
3IAOW3Y

iy
AN

M a3a1vAILOvYad

A

v/ gy Old
oLy

\ (444

A

(013 'IONVLYOdNI
ALIYOIMd ‘Sisvd
QaNINYI1L3a3™d

NO S3TNAOW
JLVAILOVIN)
30090 ONIAOWIY
Ag (S)S3TINACK
J1IVAILOVIY

A 4

3009 IIYNYALTY 4400 dON
11nNv43a
ONILO3PNI
ONILO3rNI
Ad (S)31nAOW Ag (S)31NAOW
JIVALLOV3A
J1VAILOV3Ad
A
JivaLovaa [/
m\mp<>:.o<mo / HNISSIOOUd
31VAILOVAd :Pn__%ﬂw@ﬁ%_%%mo
oL 31NAOW
OL S31NAOW
\ ININN3LIA
oz - N
gLy

US 9,274,921 B2

1
SYSTEM AND METHOD FOR MANAGING
CODE DISPLACEMENT

BACKGROUND OF THE INVENTION

The present invention relates to managing code in a soft-
ware application or the like, and more particularly to a system
and method for managing code displacement or temporary
deactivation on a predetermined basis to improve operation of
an application, server or system.

When web based applications begin to have performance
issues, such as overloading, excessive traffic or similar per-
formance issues, there are only a few alternatives available for
managing the performance of the application. In one alterna-
tive, a server or a server component may determine where and
how many instances of the application may be running. This
may prevent several clients from being able to utilize the
application that need to. Another alternative may be Edge-
Computing as provided by Akamai of Cambridge, Mass.
EdgeComputing is a trademark or service mark of Akamai in
the United States, foreign countries or both. With EdgeCom-
puting, applications may be moved out into what is referred to
as the edge and into larger distributed environments. Each of
these alternatives are coarse grained and operate by managing
the entire application as opposed to a more fine grained man-
agement, such as managing at the component level within the
application.

Another option is to package the different parts of an appli-
cation separately and to permit management of the different
parts through one of the solutions discussed above. However,
this increases the number of deployment units for an appli-
cation. Such an arrangement may be manageable for an appli-
cation with a minimum number of components, but for hun-
dreds of components or modules this arrangement can make
the deployment of an application very unmanageable.

BRIEF SUMMARY OF THE INVENTION

In accordance with an embodiment of the present inven-
tion, a system for managing code displacement may include a
manager and an application operable on a server. The appli-
cation may include a plurality of modules. Each module may
perform a different operation. The system may also include
priority information associated with each module to permit
the manager to deactivate one or more selected modules
based on the priority information to improve performance of
the application.

In accordance with another embodiment of the present
invention, a method for managing code displacement may
include monitoring a load on an application, wherein the
application may include a plurality of modules. The method
may also include deactivating a selected number of modules
based on a predetermined basis associated with each module
in response to the load on the application exceeding a prede-
termined threshold.

In accordance with another embodiment of the present
invention, a computer program product for managing code
displacement may include a computer usable medium having
computer usable program code embodied therein. The com-
puter usable medium may include computer usable program
code configured to monitor a load on an application, wherein
the application includes a plurality of modules. The computer
useable medium may also include computer usable program
code configured to deactivate a selected number of modules
based on a predetermined basis associated with each module
in response to the load on the application exceeding a prede-
termined threshold.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other aspects and features of the present invention, as
defined solely by the claims, will become apparent to those
ordinarily skilled in the art upon review of the following
non-limited detailed description of the invention in conjunc-
tion with the accompanying figures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an example of a system for
managing code displacement or temporary deactivation in
accordance with an embodiment of the present invention.

FIG. 2 is a flow chart of an example of a method for
managing code displacement or temporary deactivation in
accordance with an embodiment of the present invention.

FIG. 3 is flow chart of an example of a method for manag-
ing a cache return value in accordance with an embodiment of
the present invention.

FIG. 4 is a flow chart of an example of a method for
managing code displacement or temporary deactivation in
accordance with another embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of embodiments refers
to the accompanying drawings, which illustrate specific
embodiments of the invention. Other embodiments having
different structures and operations do not depart from the
scope of the present invention.

As will be appreciated by one of skill in the art, the present
invention may be embodied as a method, system, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product on a computer-usable storage medium, such as for
example medium 126 in FIG. 1, having computer-usable
program code embodied in the medium.

Any suitable computer usable or computer readable
medium may be utilized. The computer-usable or computer-
readable medium may be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation
medium. More specific examples (a non-exhaustive list) of
the computer-readable medium would include the following:
an electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a transmission media such
as those supporting the Internet or an intranet, or a magnetic
storage device. Note that the computer-usable or computer-
readable medium could even be paper or another suitable
medium upon which the program is printed, as the program
can be electronically captured, via, for instance, optical scan-
ning of the paper or other medium, then compiled, inter-
preted, or otherwise processed in a suitable manner, if neces-
sary, and then stored in a computer memory. In the context of
this document, a computer-usable or computer-readable
medium may be any medium that can contain, store, commu-
nicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus,

US 9,274,921 B2

3

or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to the Internet, wireline, optical fiber cable, radio
frequency (RF) or other means.

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera-
tions of the present invention may also be written in conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through a local area network (LAN) or a
wide area network (WAN), or the connection may be made to
an external computer (for example, through the Internet using
an Internet Service Provider).

The present invention is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

FIG.1isablock diagram of an example ofa system 100 for
managing code displacement or temporary deactivation of
selected modules in accordance with an embodiment of the
present invention. The system 100 may include an application
server 102, processor or the like. The application server 102
may be an IBM WebSphere Application Server (WAS) or
other type application server. IBM and WebSphere are trade-
marks of International Business Machines in the United
States, foreign countries, or both. The application server 102
may be accessed by a plurality of clients 104 via a web server
106 or similar internet gateway.

10

15

20

25

30

35

40

45

50

55

60

o
o

4

One or more applications 108 may be operable on the
server 102. Each application 108 may have a specific purpose,
such as facilitating stock transactions, providing stock
quotes, providing financial services, e-commerce or other
services. Hach application may include a plurality of modules
110 or similar units. Each module 108 may perform a par-
ticular function within the application 108. A module may be
set of software instructions, data structure, code or the like
that perform the particular function or operation and may
return a value or data to the application 108 or another module
110. Examples of different functions or operations that may
be performed by individual modules in an application may
include security, application logging at different levels, audit
logging, presenting data, controlling operation of servlets,
policy view and updating and other functions or operations
depending upon the particular application. A stock transac-
tion application, for example, may also include acquiring and
presenting stock quotes and conducting stock transactions.

A manager 112 may be operable on the server 102 or may
be associated with the server 102. The manager 111 may be
adapted to permit managing code displacement by disabling
or caching lesser priority, non-critical modules or module
functionality. Priority information 114 may be associated
with each module 110. The manager 111 may deactivate or
disable selected ones of the modules 110 based on the priority
information 111 associated with each module 110 to improve
performance of'the application 108 or server 102. The priority
information 111 may include a level of desirability for the
associated module 110 to execute based on an importance of
the associated module 110 to the application 108.

A property file 116 may include the priority information
and other information associated with each module 110. For
example, the property file 116 may include an identity of each
module 110, an importance associated with each module 110,
a type of replacement associated with each module 110 or
similar information or data. The type of replacement associ-
ated with each module 110 may include one of a no operation
(NOP) type function, a cached return value function or other
type of replacement to be returned in response to a deactivated
module being called and wherein the particular type of
replacement is associated with the deactivated module 110.

One example of a property file 116 may be to identity each
module 110 by a module name or description and to provide
a measure of importance associated with the module 110. In
the following example, the importance may be measured
from O to 100 with 0 being unimportant and 100 being most
important to the operation of the application 108.

Security: 100

Application Logging Level 1: 50

Application Logging Level 2: 30

Application Logging Level 3: 10

Audit Logging: 100

Presentation (JSP): 100

Controller (servlets): 100

EJBs

Policy View: 10

Policy Update: 60

Claim Insert: 100

Claim View: 80

Claim Update: 100

Pay Claim: 100

Stock Quote: 10

Stock Transaction: 100

In this example, application server 102 may begin running
the application 108 in its entirety. As the load starts to increase
on the application 108, a code injection 118 may be injected
to disable or deactivate a selected module 110 or selected

US 9,274,921 B2

5

modules 110 in response to a load on the application 102
exceeding a predetermined threshold. The modules 110 may
be disabled or deactivated in an order according their respec-
tive measure of importance. Accordingly, when the load ini-
tially exceeds the predetermined threshold, lower level
importance modules 110 may be deactivated and as the load
increases, higher level of importance modules 110 may be
deactivated. In the example above, Application Logging level
3 may be shut off, disabled or deactivated first. The Stock
Quote module may be deactivated next if the load increases
and so forth.

In another example of the property file 116, importance
may be expressed as a level of desirability for the module to
run as part of the application 108:

Security: required

Application Logging Level 1: desired & NOP

Application Logging Level 2: optional & NOP

Application Logging Level 3: not required & NOP

Audit Logging: required

Presentation (JSP): required

Controller (servlets): required

EJBs

Policy View: optional & Cached-Return-Value

Policy Update: desired & NOP

Claim Insert: required & Cached-Return-Value

Claim View: desired & Cached-Return-Value

Claim Update: required

Pay Claim: required

Stock Quote: optional & Cached-Return-Value

Stock Transaction: required

Java

PolicyView.class: desired & Cached-Return-Value

StockQuote.class: desired & Cached-Return-Value

StockTransaction.class: required

DetailedAnalysisModule.class: desired & Cached-Return-

Value

In this example, the level of importance to the operation of
the application 108 may be expressed as “required” for opera-
tion of the application 108, “desired” for operation,
“optional” for operation or “not required” for operation of the
application 108. Also defined may be the type of replacement
or return value in the event a deactivated module 110 is called
during operation of the application 108. For example, if the
load exceeds the predetermined threshold, the level 3 logging
could be shut off first with an NOP operation or no value or
data being returned. If the load continues to increase on the
application 108, the stock quote module could be deactivated.
However, the stock quote could have its cached return value
returned instead of a NOP replacement. The cached return
value may be stored in a memory cache 120. While the cached
value may be somewhat stale or outdated, this cached value
may be better than the NOP replacement.

The code injected 118 to shut off or disable a module 110
could also be “data not available due to load” or similar
statement as the return value or type of replacement for a
stock quote or other module where return of some notification
or information to a user may be desirable.

The previous example, where the level of importance is
expressed as a measure of importance from 0 to 100 may also
include a value or type of replacement to be returned in the
event the deactivated module is called or accessed during
operation of the application 108, similar to the example just
described. Additionally, while the measure of importance in
this example was expressed as 0-100 any quantification of the
measure or level of importance may be used.

As previously discussed, the code injection 118 may be
injected to disable, deactivate or shut off a selected module

10

15

20

25

30

35

40

45

50

55

60

65

6

110 or selected modules 110 in response to the load on the
application 108 or server 102 exceeding a predetermined
threshold. When certain load thresholds are met, code in the
application 108 or selected module 110 may be disabled
based on its level of importance or desirability. The code may
be deactivated or disabled by having the relevant code (NOP,
Cache Return Value or alternate code) injected to temporarily
disable the module’s function.

The code injection 118 or injected code may be removed to
reactivate the selected module or modules in response to the
load falling back below the predetermined threshold or below
another preset threshold that may be different from the pre-
determined threshold as described herein. The deactivated
modules 110 may be reactivated in an order corresponding to
their respective importance or desirability. Accordingly, those
deactivated modules 110 having a higher level of importance
or desirability may be reactivated prior to those with a lower
level of importance or desirability as the load or traffic gradu-
ally decreases.

In accordance with another embodiment of the present
invention, the application server 102 may include the prop-
erty file 116 and any additional sets of files 112 that may
include an “alternative shut off code” for a selected module
110 or selected modules. In this embodiment, when certain
load thresholds are met, code or a module 110 may be dis-
abled, based on the code or module’s level of importance, by
having the alternative code injected. The alternate code may
replace the original class or code to temporarily disable the
code or module’s function. Code can either be provided by
the application 108, such as alternative code modules, or NOP
versions generated by the application server 102 that dummy
out methods within the application 108. This can be achieved
through one of multiple embodiments. One embodiment may
involve a classloader 114 reloading the original class with the
alternate class. Another embodiment may include a substitu-
tion of the classloader 114. Multiple classloaders 124 may all
hold different modules 110 disabled. As disability is required
the application 108 may point to different classloaders 114
that have the desired level of code capability. Classloaders
114 could be saved to a disk or other medium 126 in order to
save memory.

When the load thresholds fall back down the injected code
may be removed and the original implementation may be
allowed to process. This method could also be handled by
loading the alternate class or code, reworking the class’s or
code’s name or identity to take over the original implemen-
tation when load or traffic levels exceed the predetermined
threshold, and then unloading the alternate class or code and
reloading the original code when the load or traffic falls below
the predetermined threshold or other preset threshold.

FIG. 2 is a flow chart of an example of a method 200 for
managing code displacement or temporary deactivation in
accordance with an embodiment ofthe present invention. The
method 200 may be embodied in the system 100 of FIG. 1. In
block 202, performance parameters or the like, such as traffic
levels 204 or other measures of performance may be moni-
tored. In block 206, lesser priority modules may be identified
for termination of traffic in response to excessive traffic to an
application or application server, similar to application 108 or
server 102 of FIG. 1. In block 208, traffic may be terminated
to identified lesser priority modules as needed on a predeter-
mined basis. The predetermined basis may include a priority
of'the module to operate, utilization or demand for use of the
module, desirability of the module to be operating or other
basis as may be appropriate for the particular application.

In block 210 lesser priority or shutdown modules may be
identified to restore traffic in response to manageable traffic

US 9,274,921 B2

7

levels or similar operational parameters being determined by
the system or method. In block 212, traffic may be restored to
the lesser priority or shutdown modules on a predetermined
basis that may be similar to the basis utilized in terminating
traffic. Accordingly, traffic may be restored to selected mod-
ules according to their level of priority, desirability, utiliza-
tion or other measure or criteria. Blocks 206 and 208 may
operate in parallel with blocks 210 and 212.

Any results from block 208 or block 212 may be sentto a
traffic controller 214. The traffic controller 214 may signal an
On Demand Router (ODR) module shutdown and restart
multiplexer (MUX) 216 to shutdown or restart modules as
further described herein.

In block 218 a determination may be made whether the
command or signal from the ODR shutdown and restart MUX
216 is a shutdown or restart command or signal. If a shutdown
signal, the method 200 may advance to block 220. In block
220, a determination may be made as to the type of code to be
injected. The type of code may be based on a property file
similar to that previously described. The type of code may be
an NOP code, a cache-return-value type code or alternative
shut-off code or other type code. In block 222, the predeter-
mined code based on the property file may be injected into the
application or module to be deactivated.

If the command or signal in block 218 is a restart com-
mand, the method 200 may advance to block 224. In block
224, the injected code may be removed and the module or
code may return to its normal or original operation. The
method 200 may end at termination 226.

FIG. 3 is flow chart of an example of a method 300 for
managing a cache return value in accordance with an embodi-
ment of the present invention. As previously discussed, the
cache return value may be sent in response to a deactivated
module in an application being called or accessed during
operation of the application. The method 300 may be embod-
ied in the system 100 of FIG. 1 or a similar system. In block
302, input parameters 304 may be obtained. The input param-
eters 304 may control deactivation and responses from a
particular module as outlined in a property file, similar to
property file 116, associated with the particular module.

In block 306, a determination may be made if there is an
input key in the cache. If there is an input key in the cache, the
method 300 may advance to block 308. In block 308, the
cached return value may be obtained from a cache 310 cor-
responding to the key being equal the input. The return value
318 may be returned in block 312 and the method 300 may
end.

Ifthereis no inputkey inthe cache in block 306, the method
300 may advanceto block 314. In block 314, the original code
may be run. In block 316, a module return value 318 may be
acquired. In block 320, the return value 318 may be stored in
cache 310. The return value may be stored in the cache 310 in
association with a key set equal to an input 304 or input
parameter and an associated value set equal to a return value
318.

FIG. 4 is a flow chart of an example of a method 400 for
managing code displacement or temporary deactivation in
accordance with another embodiment of the present inven-
tion. The method 400 may be embodied in the system 100 of
FIG. 1 ora similar system. A manager 402 may monitor a load
on an application or server. The manager 402 may monitor a
central processing unit (CPU) 404 and/or a memory utiliza-
tion406. The manager 402 may be an existing Websphere XD
decision manager ofa WebSphere Application Server or simi-
lar manager of another type application server.

In block 408, a determination may be made if the CPU
utilization 404 or memory utilization 406 or both exceed a

20

25

40

45

55

65

8

predetermined threshold or respective predetermined thresh-
olds. Ifthe predetermined threshold, both thresholds, or either
respective threshold is exceeded, as the case may be, the
method 400 may advance to block 410. In block 410, a deter-
mination may be made whether there are any modules avail-
able that are capable of being deactivated by alternate code. If
a module is available, the method 400 may advance to block
412. Inblock 412, modules capable of being deactivated with
alternate code may be determined or identified. In block 414,
the identified module or modules may be deactivated by
injecting the alternate code. The deactivated module or mod-
ules may be added to a deactivated module list 416.

If no modules are available that are capable of being deac-
tivated by alternate code in block 410, the method 400 may
advance to block 418. In block 418, any modules 420 that are
capable of being deactivated with default NOP processing or
by injecting a default NOP code or the like may be deter-
mined. In block 422, a selected module or modules may be
deactivated by injecting the default NOP code or by a similar
technique like that previously described. Any deactivated
modules may be added to the deactivated module list 416.

Ifthe CPU utilization 404, memory utilization 406, or both
does not exceed a respective, predetermined level in block
408, the method 400 may advance to block 424. In block 424,
a determination may be made whether the CPU utilization
404, memory utilization 406, or both are less than a preset
limit or threshold. If the utilization is not less than the preset
limit, the method 400 may end at termination 426. If the
utilization is less than the preset limit in block 424, the
method 400 may advance to block 428.

Inblock 428, a determination may be made if there are any
deactivated modules. If there are no deactivated modules in
block 428, the method may end at termination 426. Ifthere are
deactivated modules, the method 400 may advance to block
430.Inblock 430, a module or modules may be reactivated by
removing any code used to deactivate the module. The mod-
ule or modules may be reactivated in an order according to a
predetermined basis, such as priority of the module, impor-
tance, desirability or similar criteria. In block 432 any reac-
tivated module or modules may be removed from the deacti-
vated modules list 416.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems which perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-

US 9,274,921 B2

9

prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

Although specific embodiments have been illustrated and
described herein, those of ordinary skill in the art appreciate
that any arrangement which is calculated to achieve the same
purpose may be substituted for the specific embodiments
shown and that the invention has other applications in other
environments. This application is intended to cover any adap-
tations or variations of the present invention. The following
claims are in no way intended to limit the scope of the inven-
tion to the specific embodiments described herein.

What is claimed is:

1. A system for managing code displacement, comprising:

an application server;
a manager operable on the application server;
an application operable on the application server, wherein
the application includes a plurality of modules each to
perform a different operation and wherein the manager
monitors a load or traffic level on the application; and

priority information associated with each module to permit
the manager to deactivate selected ones of the modules
based on the priority information to improve perfor-
mance of' the application in response to the load or traffic
level exceeding a predetermined threshold, wherein the
manager is configured to determine which modules of
the plurality modules are available for deactivation by
injecting an alternate code in response to the load or
traffic level exceeding the predetermined threshold and
to determine which modules of the plurality of modules
to deactivate by injecting a default no operation (NOP)
code in response to none of the modules of the plurality
of modules being available for deactivation by injecting
the alternate code.

2. The system of claim 1, further comprising a type of
replacement associated with each module.

3. The system of claim 2, wherein the type of replacement
comprises one of a no operation (NOP) type function and a
cached return value function to be returned in response to a
deactivated module being called and wherein this type of
replacement is associated with the deactivated module.

4. The system of claim 1, wherein the priority information
comprises a level of desirability for the associated module to
execute based on an importance of the associated module to
the application.

5. The system of claim 4, further comprising a property file
including an identity of each module, the importance associ-
ated with each module, and a type of replacement associated
with each module.

6. The system of claim 1, further comprising a code injec-
tion to be injected to disable a selected module in response to
a load or traffic level on the application exceeding the prede-
termined threshold, and wherein the code injection is
removed to reactivate the selected module in response to the
load or traffic level falling below the predetermined threshold.

7. The system of claim 1, wherein the manager comprises
a data structure to inject and remove the code injection from
the selected module.

8. A method for managing code displacement, comprising:

monitoring a load or traffic level on a software application

operating on a server, wherein the software application
includes a plurality of modules;

determining which modules of the plurality of modules are

available for deactivation by injecting an alternate code

15

20

35

40

45

65

10

in response to the load or traffic level on the application
exceeding a predetermined threshold;

determining which modules of the plurality of modules to
deactivate by injecting a default no operation (NOP)
code in response to none of the modules of the plurality
of modules being available for deactivation by injecting
the alternate code; and

deactivating a selected number of modules based on a
predetermined basis associated with each module in
response to the load or traffic level on the application
exceeding the predetermined threshold.

9. The method of claim 8, further comprising reactivating a
chosen number of modules based on the predetermined basis
in response to the load or traffic level falling below a preset
threshold.

10. The method of claim 9, wherein the predetermined
basis comprises at least one of a priority of operation of the
module, a level of importance of the module to the applica-
tion, and a desirability of execution of the module during
operation of the application.

11. The method of claim 8, further comprising determining
a type of replacement associated with each module to be
returned in response to a deactivated module being called.

12. The method of claim 8, further comprising returning
one of a group of types of replacements including a no opera-
tion (NOP) type function and a cached return value function,
in response to a deactivated module being called and one of
these types of replacements being associated with the deac-
tivated module.

13. The method of claim 8, further comprising:

injecting a code injection to deactivate each module; and

removing the code injection to reactivate each module in
response to the load or traffic level falling below a preset
threshold.

14. The method of claim 8, further comprising determining

atype of code to be injected to deactivate a particular module.
15. The method of claim 14, wherein determining the type
of' code comprises determining one of a group comprising an
NOP code, a cache return value code and an alternate code.
16. A computer program product for managing code dis-
placement, the computer program product comprising:
a computer usable storage medium having computer
usable program code embodied therein, the computer
usable medium comprising:
computer usable program code configured to monitor a
load or traffic level on a software application, wherein
the application includes a plurality of modules;

computer usable program code configured to determine
which modules of the plurality of modules are avail-
able for deactivation by injecting an alternate code in
response to the load or traffic level on the application
exceeding a predetermined threshold;

computer usable program code configured to determine
which modules of the plurality of modules to deacti-
vate by injecting a default no operation (NOP) code in
response to none of the modules of the plurality of
modules being available for deactivation by injecting
the alternate code; and

computer usable program code configured to deactivate
a selected number of modules based on a predeter-
mined basis associated with each module in response
to the load or traffic level on the application exceeding
the predetermined threshold.

17. The computer program product of claim 16, wherein
the computer usable medium further comprises computer
usable program code configured to reactivate a chosen num-

US 9,274,921 B2

11

ber of modules based on the predetermined basis in response
to the load or traffic level falling below a preset threshold.

18. The computer program product of claim 16, wherein
the computer usable medium further comprises computer
usable program code configured to determine a type of
replacement associated with each module to be returned in
response to a deactivated module being called.

19. The computer program product of claim 16, wherein
the computer usable medium further comprises:

computer usable program code configured to inject a code

injection to deactivate each module; and

computer usable program code configured to remove the

code injection to reactivate each module in response to
the load or traffic level falling below a preset threshold.

20. The computer program product of claim 16, wherein
the computer usable medium further comprises computer
usable program code configured to determine a type of code
to be injected to deactivate a particular module.

21. The method of claim 8, further comprising adding an
identity of each deactivated module to a list of deactivated
modules.

22. The method of claim 8, further comprising:

providing the alternate code by the software application;

and

generating the default NOP code by the server.

23. The method of claim 22, wherein providing the alter-
nate code by the software application comprises reloading
original code with the alternate code by a one classloader of
multiple classloaders, wherein the software application
points to the one classloader that has the desired alternate
code.

5

10

15

20

25

30

12

